AXISYMMEIRIC FLOW FAR FROM A BODY IN THE VICINITY OF THE AXIS WITH MACH NUMBER M_{∞} OLOSE TO UNITY

(OSESIMMETRICHNOE TECHENIE VDALI ON TELA
 V OKRESINOSII OSI PRI CHISLE M,
 BLIZKOM K EDINITSE)

PMM Vol.28, № 1, 1964, pp.184-185
F.V. SHUGAEV
(Moscow)
(Recelved April 24, 1963)

Suppose that an axisymmetric blunt body is placed in a stream, the Mach num. ber M_{∞} of which differs only slightly from unity. Let us consider the flow in the neighborhood of the axis at a great distance from the body upstream. The origin of coordinates is located at the critical point of the body, the x-axis coincides with the direction of the undisturbed stream. In the neighborhood of the axis

$$
u=f\left(\tau_{1}\right)+\sum_{1}^{\infty} \alpha_{i}\left(\tau_{1}\right) y^{9 i}, \quad v=\sum_{1}^{\infty} \beta_{i}\left(\tau_{1}\right) y^{8 i-1}, \quad \tau=\frac{2 \Psi(x, y)}{y^{2}}
$$

Here u and v are the components of velocity along the axes x and y expressed in terms of the critical velocity, $\Psi(x, y)$ is the stream function, $f\left(\tau_{1}\right)$ is the value of the velocity on the axis [l].

It is convenient to introduce a change of variables $\tau=\varepsilon \tau_{1}$, where

$$
\varepsilon=\left\{\begin{array}{lll}
k^{-1 / 2}\left[\gamma\left(1-\frac{1}{a k^{2}}\right)\right]^{1 / x-1)}, & M_{\infty}>1, & a=1+\frac{2}{x-1} \frac{1}{M_{\infty}^{2}},
\end{array} \quad \gamma=\frac{x+1}{2}, ~\left(\gamma \frac{(a-1)}{a}\right]^{1 /(x-1)}, \quad M_{\infty}<1, \quad k=\frac{x+1}{x-1} \frac{1}{a}, \quad x=\frac{c_{p}}{c_{v}}, ~ l\right.
$$

The straight line $\tau=\varepsilon$ is [1] the shock wave $\left(M_{\infty}>1\right)$ or the undisturbed stream at infinity $\left(M_{\infty} \leqslant 1\right)$. The straight line $\tau=1$ is a limit line.

By the same token, the limit line cuts the axis [2] at the point $\tau=1$. From condition $D(x, y) / D(u, v)=0$, defining the existence of a initine, we find

$$
\begin{equation*}
F=A_{1} B_{2}-A_{\mathbf{3}} B_{1} \tag{1}
\end{equation*}
$$

where A_{1}, A_{2}, B_{1} and B_{2} are the coefficients of the derivatives of u and v with respect to τ_{1} in the equations of gas dynamics in the plane $\tau_{1} y$. If $\tau=L(y)$ is the equation of the limit ine, then

$$
\frac{d L}{d y}=-\left[\frac{\partial F / \partial y}{\partial F / \partial \tau}\right]_{\tau=L}
$$

As a result of the boundedness of the numerator and the tendency to infinity of the denominator $Z=$ const $=1$. The coefficients α_{1} and n_{1} ans representu thut: $\alpha_{1}=\alpha_{10}+\alpha_{11}, \beta_{2}=\beta_{10}+\beta_{11}$, where α_{10}, β_{20} respectively, are the values of α_{1} and β_{1} when $\kappa_{\omega}=1$, whilst α_{11} and \mathcal{B}_{12} are the corrections required by the deviation of M_{∞} from unity. The quantitie: α_{10} and β_{10} are determined by the expression of the perturbint potentiaj [3] for transonic flow ($k_{\mathrm{c}}=1$)

$$
\begin{equation*}
\Phi=y^{-2 / 7} g(C \zeta) C^{-3}, \quad \zeta=(x+1)^{-1 / 2} x y^{-6 / 7} \tag{2}
\end{equation*}
$$

where C is an arbitrary constant. Making use of Formula (2), we find that

$$
\begin{equation*}
\alpha_{10}=6 c^{2} \Delta \tau^{5 / 3}, \quad \beta_{10}=3 c \Delta \tau^{4 / 5}, \quad \Delta \tau=1-\tau, \quad c=C^{7 / 3}(x+1)^{-1 / v} \tag{3}
\end{equation*}
$$

The equation of motion in the variables τy can be written in the rom [1]

$$
\frac{\partial}{\partial \tau}\left(e k^{-1 / 2} p+2 \tau u\right) y=\frac{\partial}{\partial y}\left(y^{2} u\right)
$$

where p is the pressure, expressed in terms of the dynamic head $\frac{1}{8} p_{\infty}{ }^{3}{ }^{3}$, u_{∞} and p_{∞} are the velocity and density of the stream at infinity. Integrating this equation with respect to T from $1-\Delta T$ to 1 and restrictin: ourselves to terms of the lowest degree with respect to ψ, we have

$$
\begin{align*}
& \quad \frac{4}{x+1} \Delta M_{\infty}^{2} h \alpha_{1}(\varepsilon)[1-(1-\Delta \tau) N]+\frac{\beta_{1}^{2}}{2} N-\frac{\beta_{1}^{2}(1)}{2}=2 \int_{1}^{1} \alpha_{1} d \tau \tag{4}\\
& h=1+O\left(\Delta M_{\infty}\right), \quad \Delta M_{\infty}=\left|M_{\infty}-1\right|, \quad N=\gamma^{1 /(x-1)}\left(1-\frac{x-1}{x+1} f^{2}\right)^{1 /(x-1)} \\
& \text { The function } f(\tau) \text { is defined by the relation [1] }
\end{align*}
$$

$$
\begin{equation*}
f N=\tau \quad\left(f=1-\tau^{-1 / 2} \Delta \tau^{1 / 2} f \ldots:(\tau \sim 1)\right) \tag{5}
\end{equation*}
$$

The quantities $\sigma_{1}(\epsilon)$ and $\beta_{1}(\varepsilon)$ with $k_{\infty}>1$ must satisfy the relatien on the shock wave

$$
\begin{equation*}
\beta_{1}^{2}(\varepsilon)=4 q \tau^{-1} \alpha_{1}(\varepsilon) \Delta M_{\infty}^{2}, \quad q=1+O\left(\Delta M_{\infty}\right), \quad M_{\infty}>1 \tag{6}
\end{equation*}
$$

whilst, when $M_{\infty} \because l$, they must vanish (the condition that the atream is undisturbed at infinity)

$$
\begin{equation*}
\alpha_{1}(\varepsilon)=0, \quad \beta_{1}(\varepsilon)=0, \quad M_{\infty}<1 \tag{7}
\end{equation*}
$$

Expanding $\alpha_{12}(T)$ and $\beta_{11}(\tau)$ in series in the neighborhood of the poimt $T=I$, and making use of equations (3) to (5) as well as conditions (1), (6) and (7) (retaining terms of the lowest degree in ΔM_{x} and assuming $\left.\eta=\gamma^{-4 / i}\right)$, wo obtain

$$
\begin{array}{ll}
\alpha_{1}=6 c^{2} \Delta \tau^{1 / 1}\left[\Delta \tau^{4 / 3}-\eta \Delta M_{\infty}^{8 / 3}\right]+\ldots, & \beta_{1}=3 c\left[\Delta \tau^{4 / 3}-\eta \Delta M_{\infty}^{1 / 2}\right]+\ldots \quad\left(M_{\infty}<1\right) \tag{8}\\
\alpha_{1}=6 c^{2} \Delta \tau^{1 / 5}\left[\Delta \tau^{4 / 4}+5 / \mathrm{s} \eta \Delta M_{\infty}^{4 / 3}\right]+\ldots, & \beta_{1}=3 c\left[\Delta \tau^{4 / 3}+5 / 8 \eta \Delta M_{\infty}^{1 / 4}\right]+\ldots \quad\left(M_{\infty}>1\right)
\end{array}
$$

Accordingly, the corrections to the velocity components ${ }_{i}$ and b at the shock wave ($\tau=\epsilon$ and $K_{\infty}>1$) expressed in terme of the iritical velucity of the flow, are of different orders, namely

$$
u_{1} \sim \alpha_{11} y^{2} \sim c_{1} \Delta M_{\infty}^{10 / 2} y^{2}, \quad v_{1} \sim \beta_{11} y \sim c_{2} \Delta M_{\infty}^{2 / 4} y \quad\left(c_{1}, c_{2} \neq 0\right)
$$

Guderley [3] wrote down the potential for axisymmetric transonic flow ($M_{\infty}>1$) in the form

$$
\begin{equation*}
\Phi_{1}=a_{0} y^{-1 / 7} g(C \zeta)+a_{1}\left(M_{\infty}-1\right)^{5 / 2} y^{6 / 7} g(\zeta, 8 / 7)+\ldots \quad\left(a_{6}, a_{1}=\text { const }\right) \tag{9}
\end{equation*}
$$

The correction, grising from the difference between M_{o} and unity, it: proportional to $\Delta M_{\infty}^{\%}$: This formula does not satisfy the boundary condition at the shock wave. ${ }^{\text {Comparison with the results of the present paper show: }}$ the inapplicability of Formula (9) for flow at a great dietance from the
blunt body in the neighborhood of the axis.
From Equation (8) we can, in particular, obtain an asymptotic formula for the function $D\left(M_{\infty}\right)$ when $M_{\infty} \sim 1$ (D is the distance between the shock wave and the axisymmetric blunt body). The quantity D is equal [4] to

$$
D=\frac{1}{2 e k^{1 / 2}} \int_{0}^{\varepsilon} \frac{p_{1}}{[\rho \partial v / \partial y]_{y=0}}
$$

where ρ is the density relative to ρ_{∞}. Using (8) we find that when $M_{\infty} \sim 1$

$$
D \sim \frac{1}{2} \int_{0}^{\varepsilon} \frac{d \tau}{[p \partial v / \partial y]_{y=0}} \sim \frac{1}{6} c^{-1}(x+1)^{\%} \int \frac{d \tau}{\Delta \tau^{4 / s}+5 / 8 \eta \Delta M_{\infty}^{\% / s}}
$$

Hence it follows that

$$
D \sim 0.32353(x+1)^{11 / 4} C^{-1 / 5}\left(M_{\infty}-1\right)^{-1 / 4}
$$

BIBLIOGRAPHY

1. Vaglio-Laurin, R. and Ferri, A., Theoretical investigation of the flow field about blunt-nosed bodies in supersonic flight. J. Aero/Space Sci., Vol.25, № 12, 1958. Russian translation in the Sborn. "Mekhanika", № 4, 1959.
2. Vaglio-Laurin, R., On the PLK method and the supersonic blunt-body problem. J. Aero/space Sci., Vol.29, № 2, 1962. Russian translation in the Sborn. "Mekhanika", № 1, 1963.
3. Guderley, K.G., Teorila okolozvukovykh techenii (Theory of transonic flows). IL, Chap.ll, 1960.
4. Shugaev, F.V., Sverkhzvukovoe obtekanie osesimmetrichnykh tupykh tel s otoshedshei udarnoi volnoi (Supersonic flow past axisymmetric blunt bodies with detached shock wave). Vestn.Mosk.Univ., Ser.Mat.Mekh., № 2,1961 .
