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Suppose that an axisymmetric blunt body is placed in a stream, the Mach num- 
ber M, r,f which differs only slightly from unity. Let us consider the flow 
in the neighborhood of the axis at a great distance from the body upstream. 
The origin of coordinates is located at the critical point of the body, the 
x-axis coincides with the direction of the undisturbed stream. In the 
neighborhood of the axis 

Here u and v are the components of velocity along the axes x and I/ 
expressed in terms of the critical velocity, Y(x,v) is the stream function, 
f(~~) is the value of the velocity on the axis Cl]. 

It is convenient to introduce a change of variables 'I = ETA, where 

The straight line 7 = B is 111 the shock wave (M,>i) or the undis- 
turbed stream at infinity (&&Q 1). The straight line 7 3 1 is a limit 
line. 

By the same token, the limit line cuts the axis [2] at the point 'I = 1. 
From condition D(%, y) /i,(u,v)= 0, defining the existence of a limit line, 
we find 

F = Al& - A,& 0) 

where A,, Aa, & and B, are the coefficients of the derivatives of u and 
with res 

?f 7=L(k P 
ect to 71 in the equations of gas dynamics in the plane 'rly . 
is the equation of the limit line, then 

dL @i&Y -=- - 
d% c 1 W/d% r4.. 
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As a result of thL boundedness of the numerator and the tendency ti: in- 
finity of the denominatur L = const = 1 . The coefficientc 
represented thuc: a, =al,+a,,, & = &i; &~, where Oc~~, PzOai anu "I '"I'~ 
are the values of 

rezpect1v;.L; , 
ai ana B1 when ,%fW = 1, whilst ail and dli are thi, 

corrections required by the deviation of M, from unity. The yuantitie. 
are determined by the expression of the perturbint; patenti% 

= 1) 

Q, = y+g (C{)C--3, 5 z (x f Q-'/* ary-‘fF (2) 

where C is an arbitrary constant. Waking use of Formula (2), we find that 

a, = 69Ai”S, PIG = 3cAz’f1, AT = 1 - z, c Z C’f” (x + l)_‘fV (31 

r 11 
The equation of motion in the variables 7~ can be written in the form 

where F is the pressure, expressed in terms of the dynamic head 
urn and p, are the velocity and density of the stream at infinity. 

$p'&LzZ, 
Integra- 

ting this equation with respect to 7 from 1 - I:, 7 to 1 and restrictin: 
ourselves to terms of the lowest degree with respect to ~4 , we have 

A=i-$-O(AM& AM,=IM,--II, 
i 

I &l = p(x-lj 1 _ x?KI..__ 

The function f(7) is defined by the reiation [l] 
I x-d-1 , 

flv = 1 (f = 1 - r-“*At”+ . . :, (t- 1)) (5) 

The quantities ei (E) and 3, (s) with ii:_ > 1 must satisfy the rselaticn 
on the shock wave 

fi,8 (a) = &X-'ul (a) AM:, q=~-$_O(AN& M,>i (6) 

whilst, when M, c 1, they must vanish (the conditJon that thi. ,tr'ram i; 
undisturbed at infinity) 

a1 (a) = 0, Pr (a) = 0, M,<l (7) 

Expanding al1 (7) and 3,1 (7) in series In the neighborhoori of the . * 
7 = 1 and making use of equations (3) to (5) as well as congitioin- 
(6) anA (7) (retaining.terms of the lowest degree in AM, and ;~j_,&$“~ 
q = r“l;), we obtain (8) 

a, 5 6c2Ar’f* [Ardf’ - qAMz] -+..,< PI = 3c [Ar’f’-qAL\Mz] +... (n,l, < 1) 

a, = 6c~A~‘f’ [ At‘f*+ J/s q AM?]+... , PI = 3c [AT‘~ + %qAMz] +... (Ma> 1) 

Accordingly, the corrections to the velocity components tc and. L, at 
the shock wave (7 = E and dv_ > 1) expressed in termc of tl-IV cl&i.tical velu- 
city of the flow, are of different orders, namely 

ul-aarllyS- c,AMzv, VI- hiy- c,AM& (C1r cz # 0) 

(& 
Guderley [3] wrote down the potential for axisyrnmetric transonic flow 
> 1) In the form 

a1 = U~Y-~~g(c~) + al (M, - qvvBhg (~,8/~) + . . . (% %= const) f3 

The correction rising from the difference between M,,, 
l& 

and unity, ii 
proportional toL\ This formula does not satisfy the boundary condition 
at the shock wave. Lomparison with the results of the present paper uhilwI 
the inapplicability of Formula (9) for flow at a great ,iiztanc? fyorn CtiC 
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blunt body in the neighborhood of the axis. 

From Equation (8) we can, in particular, 
the function D(M,) when Mm - 

obtain an asymptotic formula for 
1 (D is the distance between the shock wave 

and the axlsymmetric blunt body). The quantity D is equal [4] to 

1 e 
DE- 

2ek"' s 
0 

where p is the density relative to p, . Using (8) we find that when M--l 

Hence it follows that 

D - 0.32353 (X + 1)%-va (M, - f)>‘l 

BIBLIOGRAPHY 

1. Vaglio-Laurin, R. and Ferri, A., Theoretical investigation of the flow 
field about blunt-nosed bodies in supersonic flight. J. Aero/Space 

Vo1.25, Ng 12, 1958. 
Z&959. 

Russian translation in the Sborn."Mekhanlka", 

2. Vaglio-Laurin, R., On the PLK method and the supersonic blunt-body prob- 
lem. J. Aero/Space Sci., Vo1.29, Ng 2, 1962. Russian translation In 
the Sborn."Mekhanika", NP 1, 1963. 

3. Guderle K.G., 
3: 

Teoriia okolozvukovykh techenii (Theory of transonic 
flows IL, Chap.11, 1960. 

4. Shugaev, F.V., Sverkhzvukovoe obtekanie oseslmmetrichnykh tupykh tel S 

otoshedsheiudarnoivolnoi (Supersonic flow past axisymmetric blunt 
bodies with detached shock wave). Vestn.Mosk.Univ., Ser.Mat.Mekh., 
Ne 2, 1961. 

Translated by A.H.A. 


